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EXECUTIVE SUMMARY 

 The Aeronautics Division of the Utah Department of Transportation (UDOT) sponsored 

this project to help non-towered airports automate aircraft operation count and identification. A 

video-based air traffic surveillance system is developed to keep records of the flight operations 

and their status at Utah airports. There are 46 public-use airports in Utah. The technical advisory 

committee (TAC) selected five Utah airports for the project field test locations collected at: 1) 

Bountiful, 2) Heber, 3) Logan, 4) Brigham, and 5) Spanish Fork.  

 Air traffic data is collected from the airport test locations at different times of the day and 

in different weather conditions, including sunny, cloudy, rainy, and snowy. A GoPro Hero 8, 

GoPro Hero 3, and Fuji Film XT-30 mounted on steel tripods are used to record the necessary 

video data. After preliminary discussions, two camera layouts are set to test for the camera 

deployments in the airports. Layout 1 targets the runway area, and layout 2 captures the footage of 

the taxiway-runway connectors. The motivation for the second layout is to obtain a closer view of 

aircraft operations for possibly higher identification confidence.  Several data collections are 

conducted in the above-mentioned test location for each camera layout separately, and the results 

showed a high accuracy regarding the flight operation coverage for both camera layouts.  

 To empower the camera sensors with computer vision, the research team developed a 

machine learning-based software. After transmitting the video data to the computer center, the 

software processes individual video frames to detect, count, and identify any operating aircraft in 

the airport aerodrome. The software backend is compiled first in MATLAB language and then is 

ported to Python language for a better inference time. Several machine/deep learning algorithms 

are used for several tasks such as motion detection, aircraft detection, operation tracking, aircraft 

trajectory quantification, tail number region detection, tail number character recognition, and 

aircraft operation identification. This report provides detailed descriptions of each of the 

implemented algorithms that are included in the final computer vision system. The results show a 

promising accuracy regarding the operation count. As long as the tail numbers printed on the body 

of the aircraft follow a conventional format (e.g., size, orientation, font, color, and design), the 

software can successfully identify the target aircraft. 
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1.0 INTRODUCTION 

1.1  Introduction 

The primary method of airport environment monitoring is the airport control tower. An air 

traffic control tower’s role is to identify and keep records of aircraft operations and efficiently 

coordinate aircraft and vehicle operations on the airport field. It is noteworthy that non-towered 

airports—those not served by an operating air traffic control (ATC) tower—are much more 

common than towered airports. In fact, nearly 20,000 airports in the United States are non-towered, 

compared to approximately 500 that have towers (AOPA, 2021). While there is no accurate air 

traffic monitoring system at non-towered airports, alternative methods must be used to maintain 

safety and keep records of their air traffic.  

 

A part of the operation counting outcome will later be used as a basis for funding plans, 

resource allocations to airport industries, and airport performance assessment. The fleet mix 

information at these non-towered airports is important since different aircraft types emit different 

levels of air pollutants and noise. Considering these needs at non-towered airports, an automatic 

air traffic monitoring system can provide the managers with air traffic data and the operators/users 

with spatial awareness in the airfield, minimizing the chances of runway incursions. Billings 

(1997) used terms such as safety, reliability, economy, and comfort to state aviation automation 

benefits. 

 

Several attempts have been made to address the operation counts at airports. Of them, 

acoustic, radio, radar, and satellite-based methods are the most common. However, these methods 

have drawbacks in terms of accuracy, feasibility, and cost. On the other hand, a vision-based 

method can solve these problems and has been the central core of this research methodology. In 

recent years, machine vision techniques proved to be a practical solution for similar transportation 

applications such as transportation asset inventorying (Cross et al., 2020 and Farhadmanesh et al., 

2021a, and Farhadmanesh et al., 2021b). The following describes the current problem with the 

existing methods for counting and recognizing the airport operations at non-towered airports. 
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1.2  Problem Statement  

Within the current automatic technologies being used to monitor airport operations, 

General Audio Recording Device (GARD) is an electronic tracking data system that records the 

number of operations at the airports using radio traffic. The airport managers later use this data to 

calculate the airport’s operational activity (Invisible Intelligence, 2021). Although it is an 

advancement in recording flight operations, it cannot recognize any aircraft that does not provide 

radio communication. Also, this system does not identify the aircraft’s identity, nor is it able to 

provide a real-time assessment of the airport runway to guarantee the operation’s (landing/taking 

off) safety. Radio click counting (RCC) is an example of radio transmission systems for aircraft 

operation estimation. The RCC system counts the microphone clicks in each aircraft, where every 

3 to 4 clicks correspond to one aircraft. In this way, it is possible to estimate how many aircraft 

are operating, but the system cannot distinguish the aircraft operation (either landing or departure), 

nor can it provide an accurate and reliable operation record. 

 

Another current technology that has been implemented in the air traffic system is 

Automatic Dependent Surveillance-Broadcast (ADS–B). It consists of a technology in which an 

aircraft determines its position via satellite navigation and periodically broadcasts it to the air 

traffic control ground station or other aircraft, enabling it to be tracked and allowing self-separation 

(Airservices Australia, 2012). Despite the advantages, this system requires an optimum site with 

an unobstructed view to the aircraft, and some outages are expected due to poor GPS geometry 

when satellites are out of service (Koh, 2019).  

 

That said, our proposed system aims to provide uninterrupted ground-based operation 

monitoring using a video-based system, which does not require a GPS signal or radar to count and 

identify the aircraft (type, make, model, etc.) and the operation status (departure/arrival) at airports. 

The proposed independent system is flexible to different airport layout plans and has a solution for 

capturing touch-and-go operations as well. 

 

In this research, our automatic independent video-based air traffic surveillance system 

(AIVATS) has a solution for all airport types (with centralized and decentralized terminals). 

https://en.wikipedia.org/wiki/Aircraft
https://en.wikipedia.org/wiki/Satellite_navigation
https://en.wikipedia.org/wiki/Airservices_Australia
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Cameras at strategic locations at the host airport are the required hardware of this video-based air 

traffic surveillance solution (Figure 1). The designed software empowers the cameras with 

autonomous system characteristics using computer vision. By being an autonomous air traffic 

surveillance system, AIVATS consists of the implementation of a video-based system to 

automatically detect aircraft, track/count the aircraft operations (both on-the-ground level and off-

the-ground level), distinguish departure operations from landing operations, and identify aircraft 

by its tail number. All these tasks are done independently by the developed software and camera 

footage, with no need for external auxiliary electronic devices mounted on the aviation fleet. 

Autonomous systems introduce a level of flexibility that allows service levels to be enhanced 

(Frequentis, 2016). 

 

 

Figure 1 Camera layout 1 (blue colored), and layout 2 (red colored) in the airport 

1.3   Background 

There are a few technologies being used to monitor aircraft operations (i.e., to track, count, 

distinguish, and identify). According to Johnson and Gu (2017), it is crucial to keep records of the 

number of aircraft operations (take-offs and landings) annually since this operations data is heavily 

used when developing airport master planning, conducting airport environmental research, 

forecasting economic impact, adjusting funding, and measuring aviation performance. In addition, 

operation counts are reported on the FAA Airport Master Record Form 5010 (FAA, 2016). At 

towered airports, aircraft operations are counted during tower hours. On the other hand, at non-

towered airports, aircraft operations are estimated based on sample counts or other methods 
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(Johnson and Gu, 2017). The primary method of tracking and counting aircraft was based on radio 

transmission data, such as radar. The current systems in practice, which are also briefly reviewed 

in the problem statement, are ADS-B, GARD, and RCC. 

 

1.3.1 Non-Vision-Based Systems  

  

 The ADS-B system determines the aircraft’s position via satellite and periodically 

broadcasts it, enabling it to be tracked in real-time by the ATC and other aircraft with ADS-B 

hardware. It is an automatic monitoring system since it does not need the pilot’s input but only the 

data from the aircraft’s navigation system (FAA, 2019). ADS-B-based methods are not still 

suggested as an effective method for operation count due to the low equipage rate of the aviation 

fleet with ADS-B out units (FAA, 2021).  

 

On the other hand, the GARD system monitors airport flights at a determined frequency 

and collects data from take-offs and landing operations. The system uses the airport UNICOM 

frequency to record audio transmissions, using the average number of transmissions made by each 

aircraft, which counts them as one operation (Parlin Field, 2014). A downside of this technology 

is that GARD only monitors one frequency per unit (Invisible Intelligence, 2021), so it would be 

necessary for many devices to monitor different frequencies. One common issue with these 

systems (including RCC) is the use of radar and/or radio information. As a result, these systems 

rely on externally provided input data and tend to be inaccurate due to data transmission 

interruptions and noises.  

 

The use of acoustical counters, which only use the aircraft sounds while taking off, leads 

to obtaining less accurate operation flight data and missing all landing operations. Examples are 

missing a single-engine aircraft operation at a distance of 50 feet of the acoustic counter unit 

(ACRP report 129, 2015). The counter may mistakenly count any other nearby aircraft that is not 

necessarily taking off or landing. For long runways, multiple counters are needed, which makes it 

more labor-intensive. Also, no information on aircraft type and model is provided by such systems 

(ACRP report 129, 2015). To that end, an image-based method can be used. 
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1.3.1 Vision-Based Systems  

 

 A vision-based surveillance system can independently tackle the aforementioned needs at 

airports. Besada et al. (2001) proposed a surface surveillance system based on CCTV cameras pre-

installed in control towers at airports. Their proposed system performs aircraft and vehicle mobile 

positioning and tracking based on a foreground-background separation algorithm (using blob 

analysis) which usually is highly sensitive to camera movements and does not yield robust 

detections. Additionally, the use of CCTV tower cameras can only help position aircraft in their 

field of view and cannot capture and recognize the aircraft in operation to keep the flight records.  

 

On the other hand, a fully automatic video-based system can provide an air traffic 

monitoring service independently. This report presents an independent vision system to monitor 

aircraft operations in the airport environment. It has two layouts (with two camera deployment 

plans) in airports and is able to detect, track, classify, and identify an operating aircraft 

independently. This system is adaptable for different airport configurations and does not rely on 

external auxiliary unit input such as ADS-B out and ASDI. 

 

Not only can such a system count the operations and deliver runway clearance, but it also 

can detect and identify the aircraft using the printed tail number on the aircraft’s body. On layout 

1, one camera is positioned near each end connector towards the runway so that arrivals and 

departures can be captured from the runway’s two endpoints. The arrival operations will be off-

the-ground level and the departure operation on-the-ground level. This process uses a video frame-

by-frame aircraft detection method. If an aircraft is detected using the embedded object detection 

algorithm, the processing software activates the visual tracking module that subsequently classifies 

the aircraft movements into either departure or arrival operations. This detected operation will then 

add to the operations count of the total number of landing or take-off operations. Moreover, the 

system uses optical character recognition methods to detect and read the tail number of the aircraft, 

identifying it, making it possible to match with the FAA (Federal Aviation Administration) 

database. 

Layout 2 performs the same steps as the previous one, but the cameras are positioned 

toward runway connectors to monitor the taxiing aircraft from/towards the runway. It gives a better 
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chance for reading the aircraft’s tail number since the aircraft is closer and moving slower than 

operations captured in layout 1. AIVATS layout 1 can accurately count the number of operations. 

The test results are assessed in the data evaluation section. It should also be noted that AIVATS 

layout 1 can work independently and keep records of touch-and-go operations. In cases of need 

for higher aircraft identification accuracy, layout 2 can be implemented both independently and 

jointly, which also helps with finding the percentage of touch-and-go operations in an airport as a 

spinoff use. 

 

The research methods section reviews each sub-element of the proposed system, including 

aircraft detection, tracking, and identification. The conducted research works are critically 

assessed for each sub-element, and the best approach is adopted and developed for addressing the 

system sub-element’s requirements. 

1.4  Objectives 

This project aims to assist in the monitoring of aircraft operations for airports that do not 

have ATC towers. Our proposed system will keep records of aircraft operations using cameras 

deployed in the airport. Figure 1 depicts the proposed system, which includes two independent 

camera deployment layouts. The detailed camera coordinations are in the camera layout plans 

subsection in the research method section. As such, each layout will provide airport air traffic 

information, enabling managers to plan for maintenance and repairs based on the actual airport 

traffic load. The outcome data is useful for airport owners, managers, pilots (airport users), and 

basically, everyone involved with airport operations. 

1.5   Outline of Report  

● Introduction 

● Research Methods  

● Data Collection 

● Data Evaluation  

● Conclusions 
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2.0  RESEARCH METHODS 

In this section, the algorithms required for the proposed system are first evaluated. We 

explain how they are selected and why. In this process, the collected preliminary data is used as a 

basis in order to have compatible software to the actual video footage of the final system. Later, 

Section 2.2 discusses the camera placements and provides a field of view for maximizing aircraft 

operation capture by the proposed camera systems. Finally, we elaborate upon the software 

backend regarding the computer vision modules that actually empower the recorded video footage 

with aircraft operation recognition feature. 

2.1 Algorithm Selection 

In this section, image recognition challenges regarding aircraft detection, tracking, and 

identification are discussed. Accordingly, solutions are devised to address the image recognition 

requirements for use in an airport automatic video-based air traffic surveillance systems. 

 

2.1.1 Aircraft Detection 

Detecting the operating aircraft in the camera field of view is the first step toward the 

autonomous air traffic monitoring system. Extensive research work (Alganci et al., 2020, Chen et 

al., 2018, and Xu et al., 2018) is conducted for detecting airliners from remote sensing images, 

which are different imagery data from a ground-based camera layout in an air traffic surveillance 

system. Dey et al. (2011) and Fu et al. (2014) proposed a rapid aircraft detection and tracking 

method using multiple classifiers for unmanned aerial vehicles’ (UAV) sense-and-avoid systems. 

Since their proposed methods are to avoid flying aircraft by UAVs in the sky, they did not consider 

aircraft detection in cluttered environments such as the near-surface of the airport, nearby ground 

traffic, and possible construction equipment. In contrast, departure operations take place on the 

near-surface of the airport with a complex background in the footage (Figure 2). 
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Figure 2 Aircraft detection in a video frame with a complex background 

 

Alternatively, to implement an accurate aircraft detection module in our system, we use 

deep neural networks (DNNs). In particular, several convolutional neural networks (CNN-based 

methods) have been proved to achieve state-of-the-art object detection, for instance, Region-CNN 

(R-CNN) (Girshick, 2014). Even though R-CNN is able to present high accuracy, the process is 

slow and difficult to optimize. That considered, YOLO (You Only Look Once) (Redmon, 2016) 

and SSD (Single Shot Detector) (Liu et al., 2016) are the two selected candidates, as they have 

shown high performance in a range of different applications, outperforming existing approaches 

regarding object detection speed while preserving a good accuracy. YOLO diminishes the 

computational complexity issues associated with R-CNN by formulating the object detection 

problem as a single regression problem. The main difference between YOLO and SSD networks 

is the absence of fully connected layers at the end of the SSD’s network. 

 

2.1.2 Aircraft Tracking 

Tracking is the task of locating an object in successive frames of a video after first detecting 

the object. Rastegar et al. (2009) developed a method for airplane detection and tracking based on 

wavelet transform and SVM (Support Vector Machine) classifier. The proposed method uses both 

color and spatial information obtained from the image. However, Rastegar’s method works well 

for pixel-level classification and does not yield accurate tracking, especially for localizing the 

aircraft after the first detection. Detecting and tracking aircraft below the horizon might present 

different challenges, such as a more complex background induced by the airport environment’s 

nature. 
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Considering the background complexity, a robust tracking algorithm is required to ensure 

consistent results. MOSSE (Minimum Output Sum of Squared Error) (Bolme et al., 2010) is a fast-

tracking algorithm, which is robust to variations in lighting and poses at the same time. These 

characteristics make MOSSE a proper choice for the task of aircraft tracking in an autonomous air 

traffic control system. Figure 3 shows the result of tracking an arrival operation in layout 1 using 

MOSSE after detecting the aircraft with the aircraft detection module. 

 

Figure 3 Left: Detecting aircraft in a video frame, Right: Tracking the detected aircraft in 

the consecutive video frames 

 

2.1.3  Aircraft Identification 

How to identify aircraft from its image? Tail numbers are the answer. Molina et al. (2002) 

proposed a method for detecting the tail number of airliners and subsequently reading it for 

Advanced Surface Movement Guidance and Control Systems. Their proposed method uses the 

captured images from stationary airliners to localize the tail number region zone using the 

contrasting regions (letters) in the grayscale image. As a result, the proposed method most likely 

does not perform well for identifying aircraft in operation (i.e., in motion) since any movement 

results in blurry images. Molina’s proposed image processing algorithm searches over several 

extracted sub-images from the original image of the stationary airliner and limits the potential 

candidate using a two-level contrast threshold detector. The binary images resulting from 

thresholding are then reprocessed with a blob-growing algorithm to accentuate the possible 

character pixels. After repeating the described steps several times, the zones that are present in 

several sub-images are selected as the tail number region candidate, and the target zone will be the 
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highest voted one. The recognition then proceeds with the integration of a feature-based OCR and 

FAA database, where they convert the problem into a vector classification to solve the problem. 

Although this method promised a high recognition accuracy for airliners, it cannot work well for 

all aircraft types, namely light aircraft. Molina’s method is based on symmetric and standard-letter- 

style tail numbers printed on the body of airliners, which are much bigger than on light aircraft 

(Figure 4, left). When there are many visual variations such as aircraft poses while 

landing/departing and inclined tail numbers with different font shapes and sizes (Figure 4, right), 

deep learning-based detection can help increase text detection/recognition accuracy in the natural 

scene. 

 

 

 

 

 

Figure 4 Left: Images from airliners’ tail numbers (Molina et al., 2002), Right: A video 

frame of an aircraft in motion (landing, camera layout 1) 

 

 That being said, we chose a DNN-based text detection and recognition to be embedded in 

our software for the air traffic monitoring system. For the task of text region detection, the 

TextBoxes network (Minghui, 2017) and the EAST algorithms are tested, and the former is 

selected for its accurate and fast detection. The Convolutional Recurrent Neural Network (CRNN) 
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(Shi et al., 2016) and Tesseract (an open-source OCR library) are tested, and CRNN is selected for 

being used as the backend of the software’s tail number recognition module. These two networks 

(TextBoxes and CRNN) provide an accurate tail number identification as long as the tail numbers 

are not very small and not cluttered with random lines printed on the aircraft body. 

2.2  Camera Layout Plans 

After careful observation of the various existing airport layout plans and interaction with 

local airport operators, two possible camera layouts for small airports are proposed, each with 

different data capturing setup and requirements. An air traffic surveillance system aims to record 

all flight operations in an airport. Aircraft pilots run from the end of the runway to add a safety 

margin for a stop on the runway in case of an engine failure/rejected take-off. Therefore, two ends 

of the airport runway are designated as strategic points for camera placements in layout 1 to capture 

flight operations (Figure 5, top). As explained and as shown in Figure 5 (bottom right), departure 

operations, which start from either end A or end B, are captured on the ground level in the provided 

field of view. Accordingly, the arrival operations are taken while landing, although still off the 

ground level (Figure 5, bottom left). 
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Figure 5 Top: Camera deployment in layout 1, Bottom: Field of view in Camera A for an 

arrival operation (left) and a departure operation (right) on the runway area 

 

While layout 1 is capable of having all flight operations, including touch-and-go activities, 

some aircraft operations might not be visually identifiable in its field of view (Figure 6: Difficult 

to read the tail number for identification purposes). That considered, layout 2 is designed for cases 

with higher recognition accuracy provided by layout 1. Figure 7 demonstrates the camera 

placements and orientations in the airport for layout 2. 
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Figure 6 View of a landing aircraft with a difficult-to-read tail number in layout 1 FoV 

 

 Since any operation needs a passage over connectors, layout 2 FoVs view flight 

operations (either departure or arrival) on the ground level and are able to distinguish them based 

on the aircraft motion direction in the respective connector. 
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Figure 7 Top: Camera deployment in layout 2, Bottom: Field of view in Camera A for a 

departure operation (left) and an arrival operation (right) on the taxiway-runway 

connector area 

 

As a spinoff use, layout 2 can be used for finding touch-and-go activities’ occurrences as 

well. To that end, the counted arrival operations at connector passages are subtracted from all 

landing aircraft operations seen at the end connectors (Cam A and D in Figure 7). Figure 8 shows 

the Cam A field of view for a landing operation. Table 1 illustrates air traffic visual data details 

provided by each camera layout separately. 

 

 

Figure 8 Landing aircraft in layout 2 Cam A (end connector FoVs) 
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Table 1 Typical visual data field provided by camera layout 1 and layout 2 

Visual data set field Layout 1 Layout 2 

Able to count all flight operations ✓ ✓ 

Able to distinguish departure operations from landing operations ✓ ✓ 

Able to count touch-and-go activities ✓ ✓ 

Able to capture aircraft tail number for departure and arrival operations ✓ ✓ 

Able to capture aircraft tail number for touch-and-go activities ✓ ✗ 

Able to distinguish touch-and-go activities from non-touch-and-go 
arrival operations 

✗ ✓ 

 

 

 The test locations are five public-use airports in Utah: Bountiful Airport, Brigham City 

Municipal Airport, Spanish Fork Airport, Heber City Airport, and Logan-Cache Airport. In the 

best-experimented setting, the dataset was collected with low-priced commercial off-the-shelf 

cameras (GoPro Hero 8, Figure 9) recording with 1080 video resolution and 30 frames per second 

to ensure enough pixel and number of frames in a flight operation time window for aircraft 

identification. The data collection section discusses the different video resolutions that are tested 

for different tasks (i.e., aircraft operation count and identification). 
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Figure 9 GoPro Hero 8 camera setup 
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Other than testing different video resolutions, the project lead examined the effect of using 

an IR cut lens. This was done originally to improve system accuracy regarding tail number 

recognition, especially in camera layout 1 that has a longer range of view. Using an IR cut lens 

(Figure 10a) can help us in cases of extreme illumination conditions. These lenses work by being 

formulated to record infrared light particles. At not-so-extreme conditions, they do not make any 

difference (Figures 10b and 10c). However, when the sun was shining straight to the camera lens, 

there was a difference, and the tail number is more apparent after using the IR lens. Therefore, the 

accuracy of recognitions will be increased depending on the illumination conditions.  

  

  

a b 

  

c d 
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e f 

Figure 10 Effect of the IR cut lens (a) at not-so-extreme illumination conditions (c and d) 

and at extreme illumination conditions (e and f); b) camera without IR lens 

lens 

 

2.3  Software Development 

There are non-operational activities included in the airport video footage in both layouts. 

Nearby ground traffic (either inside the airport or outside the airport) and construction activities at 

some airports are examples. Also, the aircraft approach trajectories vary for different aircraft at the 

airport aerodrome. Aircraft in motion and in some cases with high speed (landings) are other 

challenges that must be considered while compiling the software backend. Therefore, a multistage 

design is developed for the software. Figure 11 illustrates the software backend flowchart from the 

video feed to the flight status recognition and aircraft operation identification. 
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Figure 11 Software flowchart 

 

The core software modules include aircraft detection, aircraft tracking, tail number region 

detection, tail number recognition, and joint probability analysis. The remainder of this section 

discusses the implementation of each module. 

 

Regarding the aircraft detection module, two neural networks are selected to be used for 

camera layouts. The YOLO machine learning package, which promises very accurate detections, 

is implemented for layout 1. On the other hand, layout 2 provides a closer range of view, so it can 

benefit from a faster detector that needs larger objects for detection in the scene named SSD. 

YOLO and SSD-trained models on the Microsoft COCO dataset (Lin et al., 2014) are implemented 

in Python using the OpenCV (Open Source Computer Vision Library) (Pulli et al., 2012) deep 

neural networks module. 

 

The software tracks the detected aircraft using a fast-tracking algorithm named Minimum 

Output Sum of Squared Error (MOSSE). The tracking output is a trajectory associated with the 

operation of the detected aircraft. This trajectory is then analyzed to distinguish the departure 
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operations from arrival operations. To that end, four variables are extracted from the provided 

trajectory, and a threshold value is set for each variable to classify the operations into arrivals or 

departures. These variables are the average pixel value of the aircraft trajectory, the standard 

deviation of the aircraft trajectory, aircraft operation speed, and aircraft speed uniformity during 

the observation of the aircraft operation. Each variable gets a vote, and the most-voted flight status 

determines the operation status (i.e., either departure or arrival). Due to the vast reach of aerodrome 

across the airfield and different airport layout plans, there are many variations possible for 

departure and arrival operations trajectories in the FoVs of the cameras. Hence, the 

misclassification error decreases if all the defined variables are taken into account instead of only 

one of them. 

 

The aircraft identification module comprises three sub-modules: aircraft tail number 

(region) detection, tail number recognition, and joint probability analysis. As discussed in the 

previous section, a deep neural network (DNN) named TextBoxes, is utilized to detect the tail 

number on an aircraft body in the image. Subsequently, the CRNN algorithm recognizes the 

detected texts in order to digitalize the tail numbers. Since there could be some other possible texts 

in the scene (Figure 11), non-tail number texts should be removed from the detections. One 

approach is to search over the detected aircraft bounding box in the image instead of the entire 

image. However, there would still be some unwanted detections (Figure 12, bottom). Moreover, 

the detected tail numbers at each video frame are not necessarily the correct tail number. In some 

cases, similarities between some characters result in erroneous recognition of some letters. Tail 

number occlusion by the aircraft wing and aircraft tilted pose while landing are the other 

possibilities. 
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Figure 12 Different detected texts scenarios in the cameras’ FoVs 

 

 Depending on aircraft speed while operating during the camera observation period, it takes 

from 1 to 10 seconds until it is out of FoV. This time leaves us with about 30 to 300 frames and 

tail number detections for each aircraft operation. Considering all these scenarios, the software is 

featured with a joint probability analysis (JPA) to find the most probable tail number for the 

operating aircraft. It jointly uses all of the recognized tail numbers during the observation of an 

operation and the FAA database. In the first step, all detected tail numbers are voted based on their 

maximum likelihood, which is estimated by the number of frames associated with their detection. 

An ICAO normative check (ICAO 1981; FAA, 2015) filters out the grammatically impossible tail 

numbers. The remaining tail numbers are then checked for the string similarities between the FAA 

database. A coefficient-based scoring system finds the score of the detected tail numbers based on 
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their vote and their similarity score with the FAA database tail numbers. The aircraft is finally 

identified with the highest scored tail number. Figure 13 illustrates the identification process with 

one example. This solution is called the JPA solution 1. 

 

 

Figure 13 Aircraft identification steps 

 

As described in the previous section (camera layout plans), camera layout 1 FoVs pose 

greater challenges regarding the aircraft tail number recognition task. This stems from the longer 

range of view and the fact that the operating aircraft are at a much higher speed compared to 

camera layout 1. That said, it is possible that neither of the recognition attempts results in the actual 

tail number. As a result, the JPA solution 1 cannot identify the aircraft’s identity. Two schemes 

have been devised to overcome these challenges and increase the accuracy of the camera layout 1 

for aircraft identification. First, a bilateral filter is applied to the detected aircraft image. Second, 

JPA solution 2 helps us find the closest tail number in the registration database.  

 

A bilateral filter (Figure 14) is a non-linear, edge-preserving, and noise-

reducing smoothing filter for images. It replaces the intensity of each pixel with a weighted 

average of intensity values from nearby pixels. This weight can be based on Gaussian distribution 

and depends not only on the Euclidean distance of pixels (which is preserved with the spatial 

https://en.wikipedia.org/wiki/Non-linear
https://en.wikipedia.org/wiki/Edge-preserving_smoothing
https://en.wikipedia.org/wiki/Noise_reduction
https://en.wikipedia.org/wiki/Noise_reduction
https://en.wikipedia.org/wiki/Smoothing
https://en.wikipedia.org/wiki/Digital_image_processing
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kernel) but also on the radiometric differences (like color intensity). This preserves sharp edges in 

the image. 

 

 

Figure 14 Bilateral filter and the edge-preserving effect on blurry images taken from aircraft 

in operation using cameras at camera layout 1 

 

As Figure 15 shows, JPA solution 2 assesses each of the recognized characters individually. 

It should be noted that each recognition is not an absolute deterministic recognition but actually a 

representation of a probability distribution. For example, in this recognition task in Figure 15, each 

letter has a probability distribution (e.g., “N” is detected with 68% confidence). As a result, each 

recognized letter could be another character (e.g., the first letter could be M with 18% confidence). 

JPA solution 2 uses these confidences jointly with the FAA registration database to solve the 

maximum likelihood equations (Figure 15), which gives the finalized recognition result. It is 

noteworthy that the software only uses the JPA solution 2 in cases when the JPA solution 1 cannot 

identify the aircraft tail number. 
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Figure 15 JPA solution 2 

 

2.4 Summary 

In developing the software, we first evaluated the challenges that are common in an airport 

environment. Two camera layouts are devised to test both long-range (layout 1) and close-range 

(layout 2) settings. Subsequently, an extensive review of the previous methods is done, and the 

best algorithms are selected for use in the backend of the defined modules. The core software 

modules include aircraft detection, aircraft tracking, tail number region detection, tail number 

recognition, and joint probability analysis. 
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3.0  DATA COLLECTION 

3.1  Overview 

Several data collections have been conducted to find the best setting for video recording 

configuration as well as the placement of the cameras in the two defined layouts in the previous 

section. Furthermore, the collected data is used as a basis to evaluate system performance regarding 

accuracy and feasibility. The test locations are five public-use airports in Utah: 

1. Bountiful Airport  

2. Brigham City Municipal Airport  

3. Spanish Fork Airport 

4. Heber City Airport 

5. Logan-Cache Airport 

 

The figures below show the test location airports and their configuration (layouts). The figure 

order is as in the above list. 

  

                              Bountiful Airport                                Brigham City Municipal Airport 
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                                 Spanish Fork Airport 

     

                                    Heber City Airport                                               Logan-Cache Airport 

Figure 16 Airport Layouts 
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As Figure 16 illustrates, a good combination of runway sizes is considered in the test 

locations. The size of the airports affects the aircraft mix operating in the airport as well. That said, 

a good mix of aircraft types has been captured in the conducted data collections. For example, 

Bountiful Airport has high light aircraft traffic. The challenges associated with light aircraft 

detection and recognition are their small sizes and irregular tail number shapes compared to bigger 

aircraft, such as airliners.  

 

On the other hand, Spanish Fork Airport and Brigham City Municipal Airport host a more 

mixed aviation fleet. A wide range of aircraft types, from light aircraft to heavier planes, are seen 

during data collection. This fact creates another challenge for aircraft operation recognition since 

the wider range of aircraft results in a wider range of aircraft operation speed, acceleration, and 

landing approach. This set of data helps us further customize the software for such airports.  

 

Heber Valley Airport had the most jet traffic among the test locations. This type of aircraft 

tends to operate (depart or land) at a much higher speed and acceleration compared to the other 

aircraft. The higher operation speed increases the blurry effect in the recorded video frames. 

Consequently, a higher rate of video data recording might be critical for accurate aircraft operation 

detection at these airports.  

 

Logan-Cache Airport was originally selected to assess the system performance for more 

complex taxiway-runway arrangement cases. As the plots illustrate, the operations at this airport 

involve three runway lanes with the associated taxiway and taxiway-runway passages. In the 

conclusion section, the strategic passages that control the majority of the activities in these airports 

are recognized and evaluated for optimum placement of the cameras. In the next section, the 

finalized video data quality for aircraft operation detection and classification is presented. 

3.2  Specifications 

The dataset was collected with low-priced commercial off-the-shelf cameras (GoPro Hero 

8, GoPro Hero 3, and Fuji Film XT-30) mounted on steel tripods. Several recording resolutions 
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are tested, including 4K linear, 4K wide, 2.7K (1.4x), 1080 (HD) (2x), XP+, and 1760x3120 (2x). 

Based on the results, 1080 video resolution with 30 frames per second and 2x zoom selected is 

best since it ensures enough pixel and number of frames in a flight operation time window for 

aircraft detection and operation count. However, the increase in video resolution can help with the 

task of aircraft identification through recognition of its tail number. The system evaluation section 

illustrates the extent to which increased video resolution affects the results of the aircraft 

identification in both camera layouts separately.  

 

 We conducted several data collections at the assigned test locations to have a wide variety 

of video data, including all possible variations. These variations are, but are not limited to, different 

weather/illumination conditions, other moving objects in the scene, different airport layouts, and 

different aircraft types. The project lead visited all five test locations during the project time and 

conducted multiple data collection sessions at each airport. With the assistance of the student team, 

the project lead has conducted 29 data collection sessions in total in all 4 seasons of the year (i.e., 

2020-2021). The following pictures display a few screenshots of the camera FoVs as well as the 

equipment setup at some of the data collections.  

 

 

Skypark 09-25-2020 
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Skypark 09-28-2020 

  

Skypark 10-14-2020 

  

Brigham City Municipal Airport 10-28-2020 

  

Brigham City Municipal Airport 11-18-2020 

  

Brigham City Municipal Airport 11-19-2020 
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Skypark 12-10-2020 

  

Skypark 12-15-2020 

  

Skypark 12-16-2020 

  

Spanish Fork Airport 12-23-2020 
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Spanish Fork Airport 02-19-2021 

  

  

Heber Valley Airport 06-03-2021 
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Heber Valley Airport 06-04-2021 

  

  

Logan-Cache Airport 08-10-2021 

Figure 17 Sample screenshots from cameras FoVs 

 

Figure 17 correctly shows the variety of aircraft types and the different shapes of the 

associated tail numbers printed on the aircraft fuselage. In some cases, the aircraft’s small tail 

number size is even hard for human eyes to read. The direct sunlight towards the aircraft body is 

another example of a not-readable aircraft tail number. While a polarizer filter can alleviate the 

sun radiation into the camera lens, the radiated sunlight to the aircraft body still escalates the tail 

number reading possibility. In cases where the sun shines directly into the camera lens, an IR cut 

lens can moderate the effect of the input light into the camera lens. 
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Figure 18 Data Collection Setup 

  

As the pictures in Figure 18 illustrate, all data collections are distributed throughout 

different seasons of the year for a better generalization of the research product. From the beginning 

of the project, the project leader collected the required data with a crew from Dr. Rashidi and Dr. 

Markovic’s lab. After each data collection, the video footage is meticulously assessed and 

processed with the developed algorithms (software). Several trials and errors have been made 

before having the most current software platform and camera layout configuration. Of them, we 

can point to video configurations and camera specifications, camera positions at the airports, and 

software debugging. The next section evaluates the system using the collected data from the 

assigned test locations (airports). 
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3.3  Summary 

Five public-use airports are selected for the data collection test locations. These airports 

are within the state of Utah and selected to have a wide variety of data, including different aircraft 

operations (propeller, jet, etc.), various airport layout plans, and different airport sizes. Also, the 

data collections are distributed throughout different seasons to have a wide range of weather and 

illumination conditions, including sunny, overcast, snowy, and rainy. 
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4.0  SYSTEM EVALUATION 

4.1  Overview 

We evaluate the designed system by standard metrics. First, the aircraft operation capture 

by camera layouts is assessed. Next, we report the accuracy of the computer vision algorithms, 

including aircraft operation detection and tail number identification.  

4.2  System Accuracy 

With the provided sufficient scene coverage from the designated distances, each camera 

layout independently places both departure and arrival operations under video surveillance. The 

collected data contains flight operations from various light aircraft types and various weather 

conditions (sunny, overcast, rainy, and snowy). Table 2 tabulated the camera layouts’ flight 

operation mix during the data collection. During the observation in data collection time, the 

observed operations totaled 288 and 91 for camera layout 1 and camera layout 2, respectively 

(Table 2).  

As indicated in Table 3, camera layout 1 field of view had 99.3% accuracy regarding FoV 

selection in the airport environment for capturing flight operations (i.e., departure operations and 

landing operations, including arrivals and touch-and-goes). Moreover, the software detected 

96.9% of the captured flight operations in the video footage in layout 1. Similarly, the layout 2 

system had 100% accuracy for camera FoV selection and 95.8% accuracy for operation detection 

via our vision-based software. Figure 19 and Figure 20 display the AIVATS software output 

displayed on the video footage screen (layouts 1 and 2) for further illustration. 
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Table 2 Camera layout operation mix during observation in data collection time 

 Camera Layout 1 Camera Layout 2 

# 
Observed 
Operations 

# 
Captured by 
Cameras 

# 
Detected by 
Software 

# 
Observed 
Operations 

# 
Captured by 
Cameras 

# 
Detected by 
Software 

Departure 79 79 76 52 52 52 

Landing* 209 207 201+

1** 

39 39 38 

Total 288 286 277 91 91 90 

*Note - Landings: Arrivals + Touch-and-goes, **1: One departure operation is 

misclassified as a landing operation 

Table 2 shows the AIVATS software performance is very high for the two operations’ 

count and operation-status distinguishing tasks. From 377 operations captured by cameras, only 

ten false-negative detections and one misclassification (i.e., false-positive) have resulted from 

using the software application. 

Table 3 Accuracy of the operation count task during observation 

System Accuracy for Layout 1 Accuracy for Layout 2 

Camera FoV selection 99.3% 100% 

Software (automatic vision based) 96.9% 95.8% 

Camera + Software 96.2% 95.8% 
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Figure 19 AIVATS software performance during (top image) and right after (bottom image) 

the aircraft operation in layout 1 



 

UT-21.28 Image Processing and Machine Learning Techniques for Automated Detection of Planes at Utah Airports      50 

 

 

Figure 20 AIVATS software performance during (left image) and right after (right image) 

the aircraft operation in layout 2 

 

Despite having a slight accuracy difference for operation count and operation status 

recognition compared to layout 1, layout 2 demonstrated higher potential for the task of aircraft 

tail number identification. Table 4 summarizes the two layout accuracies for the aircraft 

identification task. While the compiled software identified 64% of the total number of aircraft 

operations collected from layout 1 FoV, only about 14% of the identification errors stem from the 

software. On the other hand, layout 2 results indicate higher identification accuracy, and only 5% 

of the unidentified aircraft accounts for the software error. Closer range of view and lower aircraft 

speed in the operation time window of the FoV are the main reasons for the increased identification 

accuracy in layout 2. The remaining errors are due to the visibility of the tail numbers (e.g., their 

sizes), and sometimes they are cluttered/unclear. Furthermore, in about 6% of the cases, the 

operating aircraft did not have an imprinted tail number at all (Figure 21). 

Table 4 Aircraft operation identification (fleet mix) accuracy of the system 

 Layout 1 Layout 2 

% (correctly) identified 64% 80% 

% unidentified 

Aircraft with no printed tail number 7% 6% 

Not visible (small, cluttered, unclear tail numbers) 15% 9% 

Software error 14% 5% 
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Figure 21 Aircraft with small, cluttered, and not imprinted tail numbers 

 

4.3  System Processing 

 In order to decrease the data congestion as much as possible, several algorithms are 

improved. In addition, the project lead switched the programming software backend from 

MATLAB to Python, which is about 10 times faster. Table 4 shows the processing times for the 

defined modules.   

Table 5 Algorithms’ processing times 

Programming 

Platform 
Processing Time (seconds) 

 SYS 1 and SYS 2 Only SYS 2 

 
Motion 

Detection 

Operation 

Tracking 

Trajectory 

Post-

Processing 

Aircraft 

Detection 

(YOLO) 

T

RD 
OCR 

MATLAB 0.2 NA 0.1 NA 
N

A 
NA 

Python 0.02 0.02 0.01 0.3 
0

.2  
0.05 
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As Table 5 tabulated, the overall processing time of layout 1 is 0.35 seconds per frame, and 

this number is 0.6 seconds for layout 2. The most computationally expensive algorithm is aircraft 

detection using YOLO. That said, the project lead considered the following solutions to increase 

the software speed even more. 

● Using smaller sized video frames 

● Reducing the number of captured frames per second  

● Using more powerful computers 

● A new Aircraft Detection algorithm (YOLOV4 /SSD / Haar-Cascade Classifier) 

 

As for the last solution, we implemented three other state-of-the-art algorithms to improve 

the speed. For YOLOv4, a similar deep neural network to YOLO architecture is used with some 

internal layer differences such as the size of the convolution filters and activation layers. SSD, 

which stands for single-shot detector, is another fast deep learning-based object detection method 

in imagery data. Figure 22 displays the picturized architecture of this deep neural network which 

is constructed with less fully connected layers compared to YOLO, which is one of the main 

reasons for being faster. The last method that is implemented for the aircraft detection module is a 

very fast object detector that works based on Haar features and is named Haar Cascade classifier. 
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Figure 22 Schematic architecture of the YOLOv4, SSD, and Haar cascade object detectors 

 

Table 6 shows the improved processing times using the described and implemented 

algorithms and their resulting accuracy in two columns. They are tested for both layouts and have 

different accuracies for each system because of the difference in the range of the view in the two 

camera layouts. By using YOLOv4, the processing time of detecting aircraft is reduced from 0.3 

seconds to 0.1 seconds. As can be seen in the second column, SSD and Haar cascade were even 

faster. However, we need to choose the one that increases the speed while preserving good 

accuracy, so as numbers tell, considering both accuracy and speed, YOLOV4 is the one that is a 

good option for the backend of the software for system 1. This algorithm promises accuracy of 

more than 95% for the task of aircraft detection and, at the same time, decreases the processing 

time from 0.3 seconds to 0.1 seconds. 

 

Table 6 Aircraft detector algorithms’ performance 

Algorithm Processing Time(s) SYSTEM 1 Accuracy SYSTEM 2 Accuracy 

YOLO ~0.3 >97% >99% 
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YOLOV4 ~0.1 >95% >99% 

SSD ~0.05 >55% >93% 

Haar Cascade ~0.02 >65% >63% 

 

On the other hand, SSD is the best choice for system 2 because of its faster detection while 

at the same time offering accurate detection. With improving the aircraft detection algorithms in 

our software, the processing time of both systems is decreased (improved) by about 2 to 3 times. 

This will help with less data congestion. Table 7 shows the finalized speeds in each camera layout 

for counting and identifying tasks separately. It should be noted that the inference times are 

benchmarked on a CPU-only-inference system. Thus, an NVIDIA GPU can increase the software 

speed as well. 

 

Table 7 Improved software speeds (processing time) 

Camera Layout Number 

Total Processing Time (seconds) 

Counting task 
With TNR* task 

(identification) 

SYSTEM 1  0.15 (7 fps) 0.4 (2.5 fps) 

SYSTEM 2  0.1 (10 fps) 0.35 (3fps) 

Note: TNR = Tail Number Recognition 
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5.0  CONCLUSIONS 

5.1  Summary 

The automatic aircraft monitoring system proposed counts the operations in non-towered 

airports and automatically identifies aircraft operations, supplying the airport managers with 

valuable information about airport traffic. It facilitates the coordination of runway (pavement) 

maintenance to improve airport operations. 

 

The product of the design can be beneficial for aviation authorities to keep records of the 

activities of local airports under their jurisdiction. In addition, the system will be easy to implement 

and use at any non-towered airport with almost any airport layout plan. There are more than 20,000 

non-towered airports across the U.S., and the AIVATS system is applicable for these specific 

airports. 

 

The proposed system provides non-towered airports with flight operation count, flight 

status (departure/arrival), and fleet mix information. All other existing methods rely on either the 

sound of aircraft (acoustic counter) or an external auxiliary unit mounted on aircraft (ADS-B out). 

The former is only able to count the number of operations with no further details; moreover, their 

counting accuracy is very low, with errors between 5%-99% (ACRP report 129). The latter, as 

discussed, rely on ADS-B out; nonetheless, the aviation fleet equipage rate with ADS-B out units 

is still low (FAA current equipage levels, 2021), leading to inaccurate measurements. On the other 

hand, the proposed system independently gives an accurate tool to decision-makers in the aviation 

industry to accurately collect detailed air traffic data in their airports. This data will be essential 

for future airport improvement plans, including operational, financial, and environmental. The 

results of the project are also disseminated through the community of interest in journal and 

conference papers (Farhadmanesh et al., 2021c, Farhadmanesh et al., 2022a, Farhadmanesh et al., 

2022b, and Farhadmanesh et al., 2022c). 
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5.2  Limitations and Challenges 

This system requires camera installation for the time period of airport operation 

monitoring. However, the airport airfield usually does not have the electrical infrastructure to 

support the power for the camera platforms. This challenge can be tackled by using solar panel-

based chargers and chargeable batteries. Each camera battery can be directly charged with one 

solar panel power station. 

 

The aircraft detection system could be used to provide operators and users with runway 

clearance, preventing runway incursions. To that end, an electrical engineer can use the results of 

aircraft detection for signalizing runway clearance information to pilots. However, it might 

confuse pilots while operating rather than enhancing their situational awareness due to the possible 

misdetections. In addition, it is absolutely critical to note that such a feature is restricted by FAA 

regulations as any distracting factor could lead to an unsafe situation. As a result, this feature is 

not recommended until the electrical engineer developer can guarantee its use. 

 

5.2.1 OCR-Friendly Aircraft Tail Numbers 

 

The developed system uses visual information of the in-field cameras. As a result, aircraft 

identification depends on the readability of tail numbers. That said, some factors might cause 

misidentification or not identifying an aircraft operation. As discussed in the data collection 

section, these factors include small tail numbers, abnormal/cluttered tail number shapes, aircraft 

with no imprinted tail number on the body, and extreme illumination conditions (e.g., direct sun 

radiation to the side of the operating aircraft).  

 

The developed image pre-processing modules can improve the quality of the tail number 

images to look more readable than the original image. However, there is an important factor to 

mention. The image information should be retrievable before using these techniques. And if the 

tail number background or alphabet are cluttered, these algorithms might not be as helpful as they 

are in recovering the retrievable tail numbers. 
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As discussed with the TAC members, a few examples of OCR-friendly tail number 

appearances are provided in Figure 23. In this figure, simply good and bad instances are shown in 

two columns. On the left (good instances), the imprinted tail numbers appear large enough with 

distinguishable characters which are distanced with sufficient space in-between so human eyes can 

easily detect every character. As instances show, a slight inclination does not hurt the OCR results. 

Nevertheless, it is recommended to have manufacturers print the tail numbers with as little 

inclination as possible. That said, the first two examples in the good instances (i.e., N130BF and 

N287SC) are considered among the most desirable tail number appearances for the task of 

automatic/computerized vision-based tail number character recognition.  

 

Good Instances (OCR-friendly) Bad Instances (not OCR-friendly) 
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Figure 23 Aircraft tail number appearances with OCR-friendly classification 

 

It is recommended to avoid printing small tail numbers and print them as big as possible, 

considering the size of the aircraft fuselage (e.g., N492DS and N22QQ). The tail number is better 

to be at least 12 inches high. Characters must be two-thirds as wide as they are high, except the 

number “1”, which must be one-sixth as wide as it is high, and the letters “M” and “W” which 

may be as wide as they are high. Characters must be formed by solid lines one-sixth as thick as the 

character is high. 

 

No line or any other design should be incorporated in the background of the tail numbers. 

The best background would be a plain color (e.g., white if the numbers are printed in a dark color). 

“N732HD” (fourth row, second column) is one not OCR-friendly example with a cluttered 

background. The tail number must contrast in color with the background, be legible, and have no 
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ornamentation (Code of Federal Regulations, Title 14, Part 45-Identification and Registration 

Marking, Subpart C-Nationality and Registration Marks). 

 

It is strongly recommended to print the tail number considerably larger than other texts on 

the aircraft fuselage to avoid any misidentification caused by printed irrelevant numbers. See the 

picture on row seven in the second column (small tail number: N5074H, the irrelevant number 

printed in large font-size: 01417). Also, the marks required by this part for aircraft are 

recommended to have the same height, width, thickness, and spacing on both sides of the aircraft. 

 

Closely arranged tail numbers with insufficient space between the characters of the tail 

numbers are another example of not OCR-friendly tail numbers. The space between each character 

may not be less than one-fourth of the character width (Code of Federal Regulations, Title 14, Part 

45-Identification and Registration Marking, Subpart C-Nationality and Registration Marks). The 

picture on the fifth row, the second column (N787HD), clearly shows an example of a difficult-to-

read tail number even at a close range of view. This tail number also suffers from a difficult-to-

read font shape which could be corrected with an easily readable font shape similar to the first two 

pictures in the first column (i.e., N130BF and N287SC). The following pictures illustrate the result 

of applying a strong tail number region detection algorithm (in a yellow box) and OCR machine 

(in a pink font) on aircraft pictures. It should be noted that the distances that cameras are placed in 

camera layout 1 pose more challenge to read the tail numbers. 
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Figure 24 TRD (yellow box) and OCR (pink font) results on sample photos from aircraft 

parked in the apron area 

 

5.2.2 Nighttime Operation 

 

Infrared night vision cameras are a practical solution for capturing aircraft operations 

during the night with less visibility. Nonetheless, most of the off-the-shelf cameras with infrared 

night vision are effective for close ranges less than 50-70 feet. As a result, use of night vision 

cameras greatly benefits the camera layout 2 in cases where we can install cameras adjacent to the 

taxiway-runway connector and as close as the determined camera night vision range. 
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Runway lighting also might alleviate nighttime visibility problems. At some airports, this 

lighting is actually strong enough to perform the task of aircraft operation count. However, the 

identification task requires much more visibility to ensure tail number reading through the OCR 

machine. Figure 25 is a screenshot from video footage captured from the Spanish Fork Airport 

runway area using a camera in camera layout 1. As shown, the aircraft is quite visible thanks to 

the runway lighting at this specific airport. During the three nights of data collection at the Spanish 

Fork Airport, only one operation took place. This highlights the lower frequency in nighttime 

operations relative to daytime operations as there were more than 100 operations during the same 

time during the day.  

 

 

Figure 25 A screenshot of a nighttime operation captured with a handheld camera (which 

explains the blurriness); the aircraft is detected, and the operation is correctly counted with 

the correct operation status (i.e., departure) 

 

ACRP Report 129 (Muia and Johnson, 2015) also includes real data of aircraft activities at 

Tri-City State Airport with an hourly classification of the operation occurrences. The provided 

data is for 14 consecutive days (two weeks) with zero aircraft activity between the hours of 8:00 

PM and 6:00 AM. As a result, if system performance is reduced at night at airports with no lighting, 
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that might be slightly mitigated by much fewer nighttime flights. Moreover, it is expected to have 

a lighting facility at those airports that expect a higher nighttime operations rate. 

5.3  Recommendations 

In this report, two camera layouts are proposed to relax the video-based system for a wider 

range of airports with different layouts and sizes. Camera layout 1 is a perfect choice in cases 

where accuracy of aircraft operation count/classification is of great importance while maintaining 

a low system cost. This layout will allow an accurate airport operation count in any type of airport 

layout and size. In this layout, each runway lane (in the case of multiple runways) is covered with 

a two-camera system. The lower number of cameras will reduce the requirement for the processing 

platform (computers) as well. Unlike the existing operation counting systems, layout 1 can detect 

and classify all landings (touch-and-goes and arrivals) and departures.   

 

In cases where higher aircraft identification accuracy is desired, camera layout 2 is an 

appropriate alternative. Although this layout requires a higher number of cameras (one at each 

connector), the closer range of view allows us to use cheaper cameras and lower video resolutions 

for accurate aircraft detection/identification. In addition, this layout facilitates the calculation of 

the touch-and-go activities rate in the airport. All in all, several factors should be considered before 

choosing the camera layout type. These factors include but are not limited to expected operation 

counting accuracy, expected aircraft identification accuracy, rate of the airport’s training-related 

activities, allocated budget, airport taxiway-runway connectors’ configuration, placement of the 

hanger area, the distance between taxi lanes and runway lane, and the airport location. These 

factors will be considered when choosing the right camera layout for the five test locations in the 

implementation section (next section). 

 

5.4  Implementation 

In this section, we will first review the instructions for how to record the footage from the airports’ 

airfield considering the requirements of each camera layout separately. A sustainable solution for 
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camera installation is proposed. Subsequently, this section describes how to process the recorded 

videos to count airport activities and identify the aircraft.  

 

5.4.1 Camera Installation 

 

Basically, we first record the videos based on the following recording setup specifications. 

A solar-powered camera is suggested for a sustainable recording system so that no battery change 

would be required. Some of the cameras come with spotlights which are helpful for night vision. 

However, as stated before, the night vision cameras’ range is usually limited to 50-70 feet. Figure 

26 shows two examples of the above-mentioned cameras.  

 

The cameras should be able to record videos with at least 1080x1920 video resolution (also 

known as the HD resolution). Higher resolutions will increase the accuracy of the identification 

through recognition of the aircraft tail number. The HD resolution is more than enough for cameras 

in camera layout 2. It is critical to make sure of the original HD resolution of the cameras since 

there are some cameras on the market with “fake” HD resolution. One way to make sure of the 

quality of the camera is to use their digital zoom, and the user must be able to recognize an aircraft 

tail number from distances of about 170-180 feet (camera layout 1 distance from the runway 

centerline). The zoom should be set to about 2x (using the digital zoom or the mounted zoom lens 

of the camera). In cases of wider TSA and RSA at larger airports where more distance from 

operating aircraft is imposed to place the camera, the amount of zoom should be increased 

accordingly to achieve the same field of view in the footage of a 2x zoomed camera placed 170-

180 feet away from the runway centerline. 
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Figure 26 Solar powered cameras; night vision cameras 

 

Cameras at camera layout 1 can be placed farther than 180 feet if a higher than 2x digital 

zoom is provided by the digital camera. If the cameras are placed behind the taxiway lane, a 

minimum elevation should be provided to avoid capturing the taxiing aircraft. No digital zoom is 

required for cameras that are going to be used in the camera layout 2. 

 

Since in camera layout 1 the cameras target the runway area and fast-moving aircraft (either 

landing or departing), at least 24 frames per second are required, especially in landing operation 

cases. The collected data from several data collection sessions shows that the landing operations 

time windows vary between less than one second to about 2-3 seconds, depending on the camera 

field of view and the aircraft size and speed. Accordingly, 24 frames per second can guarantee the 

cameras do not miss the landing operations, provided that the cameras are placed at the designated 

distances. In camera layout 2, however, a minimum of 10 frames per second would suffice. 

 

Cameras with 4G SIM card connectivity let us view/check the field of view of the camera 

during the process of camera installation. In addition, if it has a stable data service, the 4G SIM 

card can be used to restore the video on a cloud. However, if the data service is not stable enough, 

an SD card should be used to transfer the recorded videos to the computer center.  
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5.4.2 Optimum Placement of Cameras 

  

As discussed, two camera layouts are devised to have a conducive system for airports with 

different configurations. The following briefly enumerates each camera layout feature: 

 

• Camera Layout 1: 

• Two cameras for each runway lane 

• Counts Departures and Landings 

• Less accurate identification compared to camera layout 2 

• Camera Layout 2: 

• One camera at each strategic passage (necessary intersections and connectors) 

• Counts Departures, Arrivals, and Touch and Goes 

• More accurate identification compared to camera layout 1 

 

However, different airport layouts are another important factor that should be taken into account 

when choosing the right camera layout. Thus, we evaluate each of the five test locations (airports), 

considering the influential factors for choosing the right camera layout.  

 

1. Bountiful Airport (Skypark) 

 

i. The large number of connectors (Figure 27) 

ii. De-centralized terminal area 

iii. Narrow runway and taxiway arrangement 

iv. Moderately short runway 
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Figure 27 Bountiful Airport (Skypark) 

 

All these factors considered, camera layout 1 with having one camera at each end of the 

airport is the best solution for this airport. The closer arrangement of the runway and taxiway 
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moderates the long range of view of camera layout 1 and makes it slightly easier for aircraft 

identification as well. 

 

2. Brigham City Municipal Airport 

 

i. The small number of connectors (Figure 28) 

ii. Centralized terminal area 

iii. Wide runway and taxiway arrangement 

iv. Moderately long runway 
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Figure 28 Brigham City Municipal Airport 

 

Quite contrary to the Bountiful Airport, Brigham City Municipal Airport has fewer 

corridors with a centralized hangar area and limited access area. This makes camera layout 2 a 

good solution for this airport. The cameras also could be deployed only on the two strategic 

locations designated in Figure 28 to keep the record of the aircraft operations. 
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3. Spanish Fork Airport 

 

i. Centralized terminal area (Figure 29) 

ii. Wide runway and taxiway arrangement 

iii. Moderately long runway 

 

 

Figure 29 Spanish Fork Airport 

 

At Spanish Fork Airport, with only about three cameras at the designated locations 

(passages), a new version of the camera layout 2 can count and identify the operations at this 
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airport. This selection of the camera layout is due to the centralized terminal area and the long 

runway at this airport. 

 

4. Heber Valley Airport 

 

i. De-centralized terminal area (Figure 30) 

ii. Narrow runway and taxiway arrangement 

 

Figure 30 Heber Valley Airport 

 

Heber Valley Airport has two main apron areas (Figure 30), which makes the terminal 

area decentralized. So, camera layout 1 would be a better option regarding the counting task and 

the number of cameras. Still, camera layout 2 with four cameras at the designated locations can 

guarantee higher aircraft identification accuracy. 
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5. Logan-Cache Airport 

 

i. Three runway lanes (Figure 31) 

ii. Centralized terminal area 

iii. Wide runway and taxiway arrangement 

iv. Moderately long runway 
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Figure 31 Logan-Cache Airport 

 

At Logan-Cache Airport, considering the number of runway lanes and arrangement of the 

runway and taxiway lanes, camera layout 2 is both cheaper and more accurate. It is cheaper since 
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in the case of camera layout 1, we would need two cameras for each runway lane which adds up 

to 6 cameras. In comparison, only 3 cameras at the designated locations are required to capture the 

aircraft activities at Logan-Cache Airport. The three determined passages can capture all activities 

interchangeably. Additionally, in the case of camera layout 1, cameras might overcount the other 

runway lanes’ operations. As a result, camera layout 2 is also more accurate due to the centralized 

terminal area.  

 

5.4.3 Processing Platform 

 

For processing the recorded video footage, a processing computer equipped with an 

NVIDIA GPU is needed. It is noteworthy that with GPU-accelerated inference, the user can 

increase the processing speed and process the video data in a shorter amount of time. The 

processing times reported in the system evaluation section are benchmarked on a system with 

CPU-only inference. The main library that is used to develop the algorithms is OpenCV which 

needs to be installed on the processing computer.  

 

OpenCV is a library of programming functions mainly aimed at real-time computer vision. 

Originally developed by Intel, it was later supported by Willow Garage then Itseez. The library is 

cross-platform and free for use under the open-source Apache 2 License. In this project, Python is 

the backend programming language used for implementing the OpenCV library and other 

dependencies (Xlrd, NumPy, Pandas). More precisely, version 4.4 OpenCV with installed Python 

3 is used for aircraft detection and tracking modules. It should be noted that the user must build 

the OpenCV package from the source to be able to benefit from the feature of GPU-accelerated 

inference in their processing platform.  

 

5.4.4 System Cost 

 

The system’s total cost can be divided into research and development and operation costs. 

Expenses related to designing the computer-vision framework and conducting field test 

experiments covered the research and development costs. The equipment cost and maintenance 
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cost comprises the operation costs of the developed vision (camera) -based system. Table 8 lists 

the approximate prices of the required equipment. 

 

Table 8 Equipment Costs 

Item Rate Quantity Subtotal Remarks 

Processing Platform 

Processing computer 
equipped with NVIDIA 
GPUs 

$2,000-
$4,000 

1* $4,000 GPUs with a high number 
(>5,000) of CUDA cores are 
preferred 

Software - - - The developed computer 
vision algorithms run on 
open access libraries 

In-field video data recording 

 Layout 1 Layout 2  

Solar-powered digital 
cameras 

$500-
$1,000 

2 to 4** ~$1,500 ~$3,000 Hardware 

Memory card $50 2 to 4** $100 $200 Hardware 

Physical infrastructure 
for cameras  

$100-
$300 

2 to 4** $400 $800 Boxes and tripod legs 

Miscellaneous $50 2 to 4** $100 $200 Box covers 

Subtotal 

  Order of 
$2,000 

Order of 
$4,000 

Data Recording Cost 

  
Order of $4,000 

Processing Platform 
Cost 

Note: *More processing platforms can accelerate the processing time in the office 

          **Depending on the number of required units for layout 2 

 

Installation and maintenance costs are listed in Table 9. In other words, the cost of 

permanent system assembly (equipment and installation) totals approximately $8,000 for layout 1. 

The remaining cost would be the maintenance cost which differs based on the desired period for 

deploying the system (Table 9). Based on the ACRP report 129 for counting non-towered airport 

operations, a period of 2 weeks to 1 month is suggested per each season sample if a statistical 

method is employed to estimate the annual operation volume accurately. 

Table 9 Non-equipment related operation cost 

Item      Rate Quantity Subtotal Remarks 

Software and hardware installation 
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Electrician $70/hr ~10 hrs. $700 Cameras 

Computer Engineer $80/hr ~10 hrs. $800 Software 

Worker $30/hr ~10 hrs. $300 Camera infrastructure 

Maintenance 

Technical Support* $30 ~10 per month $300 Transferring data from 
cameras to the computer 
center* 

Subtotal 

  Order of $2,000 Permanent Installation  

  Order of $4,000 Maintenance per year 

Note:*Varies depending on the used memory device capacity and the recorded video file sizes (resolution) 

if the 4G SIM card data service is not stable enough 

  

 With the aforementioned cost, the intelligent vision (camera) -based system offers accurate 

aircraft operation count, activity recognition, and aircraft operation identification for the 

deployment period at the target airport.  Aircraft counting equipment tested by ACRP (under 

Report 129) included automated acoustical counters, sound-level meters, security/trail cameras 

(manual counting), and ADS-B. Each of these has their advantages but also come with many 

disadvantages, including accuracy, installation problems, cost, speed, and feasibility (e.g., the 

market penetration rate). Additionally, none of them can effectively and automatically identify 

operating aircraft. More precisely, acoustical and sound-based counters are designed primarily for 

operation count. On the other hand, ADS-B-based systems depend on the aviation fleet equipage 

rate with ADS-B out (transponders). However, the current equipage rate is low (only about 57% 

[FAA, 2020]), and the transponders of most of the equipped civilian aviation fleet (about 84%) are 

incapable of transmitting Mode S signal that contains aircraft identity information. Consequently, 

this system cannot identify even a large portion of the equipped aviation fleet. Besides, the 

dependency of this system’s performance on an auxiliary electronic unit to be mounted on aircraft 

decreases the reliability of using it, especially for assisting the process of billing the landing fees. 

A system that does not depend on the cooperation of the operating aircraft can properly address 

this issue. 
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5.5  Spin-Off Benefit 

One spin-off benefit of the developed algorithms is that they can be adjusted to automate 

the aircraft tallying process through the Security/Trail Camera (ST/C) aircraft counting method. 

In this method, Security/Trail Cameras take photos when any motion is sensed, and later the photos 

are manually processed to see if the images contain an aircraft or not. The photos might contain 

wildlife, airport service vehicles, airport personnel, and/or aircraft (Figure 32). The algorithms can 

be adjusted to help with the automation of this process, so it will be laborless and, of course, faster. 
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Figure 32 Photos taken by security/trail cameras 



 

UT-21.28 Image Processing and Machine Learning Techniques for Automated Detection of Planes at Utah Airports      78 

 

5.6  Future Extension Opportunities (Prototyping)  

The project lead would like to highlight the fact that this project was on proof of concept 

of developing necessary algorithms and hardware. A potential extension to this project could be 

prototyping the developed systems and algorithms and converting the framework into a stand-

alone device deployable at airports. The development of such a stand-alone device is a complex 

project and requires a single board computer as the main processor and electronic engineering 

along with the required software adjustment and, of course, an industry mentor to conduct the pilot 

experiments (Figure 33). 

 

 

Figure 33 Stand-alone device prototyping process 
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5.6.1 Cost Analysis 

  

In this section, we assess the practicality of implementing a stand-alone device for 

automatic air traffic counting at airports by analyzing the system cost. The edge system’s total cost 

can be divided into design/field tests and operation costs. The framework design/field test expenses 

cover the project time needed to spend for research and development of the product prototype. 

Table 10 tabulated the detailed costs of research and development, including labor, travel, and 

equipment. 

 

Table 10 Stand-alone device research and development cost 

Item Rate Quantity Subtotal Remarks 

Labor - University Design Competition 

Manpower $25/hr 1400 hr $35,000 Engineer 

Travel $0.54/mi 2000 mile $1,080 Airport visits 

Expenses (equipment for one unit) 

 Layout 1 Layout 2  

NVIDIA Jetson Xavier Developer Kit $399 2 to 4* $798 $1,596 Hardware 

Raspberry Pi HQ Camera with 12.3MP 
IMX477 Sensor 

$84 2 to 4* $168 $336 Hardware 

Adjustable Focal Length Industrial 8-50mm 
C-Mount Zoom Lens  

$100 2 to 4* $200 $400 Hardware 

Waterproof Solar Panel Powered 
PowerStation 

$300 2 to 4* $600 $1,200 Hardware  

Miscelleneous $100 2 to 4* $200 $400 Case 

Subtotal 
  Order of 

$2,000 
Order of 
$4,000 

Complete 
package 

  
Order of $45,000 

Total Cost 

Note: *Depending on the number of required units for layout 2 

 

 As the table demonstrates, an engineer with computer science expertise is required to 

conduct the necessary electronic engineering tasks for assembling a stand-alone device. The 
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different amounts of equipment needed in layout 1 and layout 2 design of the stand-alone device 

affect the total cost per unit. The estimation for preparing the complete package for layout 1 and 

layout 2 totaled $2,000 and $4,000, respectively, plus the labor cost regarding the electronic and 

software/hardware engineering, which approximately totals $45,000.  

 

 With the completed system development stages, the system operation requires an 

installation plan and regular maintenance conducted by technicians and computer engineers. A 

monthly troubleshooting plan is considered to conduct the service. Table 11 represents the 

associated costs of system operation over an operational period of three years. The proposed video-

based system provides the airport industry with an aircraft operation count, which supports future 

federal and state planning and funding allocations. 

 

Table 11 System operation costs 

Item Rate Quantity Subtotal Remarks 

Labor for installation 

Electrician $70/hr 10 hrs. $700 1 worker 

Computer Engineer $80/hr 10 hrs. $800 1 worker 

Labor for maintenance 

Technical Support $100/day 36 inspection sessions $3,600 Once per months 

Subtotal 
  $5,100 Per unit for 3 years 

  Order of 
$2,000 

Maintenance per year 

 

 Comparing the cost of the system with an automated acoustical counter (AAC) can easily 

show the benefit of using the vision-based operation counting system. AAC counters are among 

the most common systems used by airport authorities to measure the volume of their domestic 

operations. Based on ACRP Report 129 released in 2015, an AAC counter costs approximately 

$5,000 per unit, and it should be noted that for most cases, multiple counters are needed (e.g., in 

92% of the cases, three counters are needed on a single 5,500 foot runway). As a result, the AAC 
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system costs more than the vision-based system since the 1st layout of the vision-based system can 

monitor a 6,000 ft long runway with two units with an overall equipment cost of $2,000 and a 

maintenance cost of $2,000 per year. Notably, a vision-based counter has shown higher accuracy 

(more than 90% based on the conducted tests for assessing the system performance). According to 

Mott and Sambado (2019), the accuracy of acoustic devices is about 59% in counting the number 

of airport operations. This, in addition, shows the advantage of a vision-based system for 

measuring airport operations at general aviation and non-towered airports. 
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